Obtain equations of motion for constant acceleration using method of calculus.
Answer By definition
$a=\frac{\mathrm{d} v}{\mathrm{d} t}$
$\mathrm{d} v=a \mathrm{d} t$
Integrating both sides
$\int_{u_{0}}^{v} \mathrm{d} v=\int_{0}^{t} a d t$
$=a \int_{0}^{t} \mathrm{d} t \quad \text { (a is constant) }$
Further,
$\boldsymbol{v}-\boldsymbol{v}_{0} =\boldsymbol{a} t$
$\boldsymbol{v} =\boldsymbol{v}_{0}+\boldsymbol{a} t$
$\boldsymbol{v} =\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t}$
$\mathrm{d} x=v \mathrm{d} t$
Integrating both sides
$\int_{x_{0}}^{x} \mathrm{d} x=\int_{0}^{t} v \mathrm{d} t$
$=\int_{0}^{t}\left(v_{0}+a t\right) \mathrm{d} t$
$x-x_{0} =v_{0} t+\frac{1}{2} a t^{2}$
$x =x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
We can write
$a=\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}$
$\text { or, } v \mathrm{d} v=a \mathrm{d} x$
ntegrating both sides,
$\int_{u_{0}}^{v} v \mathrm{d} v=\int_{x_{0}}^{x} a \mathrm{d} x$
$\frac{v^{2}-v_{0}^{2}}{2}=a\left(x-x_{0}\right)$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
A bus moving along a straight highway with speed of $72 \mathrm{~km} / \mathrm{h}$ is brought to halt within $4 \mathrm{~s}$ after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is__________.$\mathrm{m}$.
The velocity $v$ of a particle moving along $x$-axis varies with its position $(x)$ as $v=\alpha \sqrt{x}$; where $\alpha$ is a constant. Which of the following graph represents the variation of its acceleration (a) with time $(t)$ ?