Obtain the formula for the electric field due to a long thin wire of uniform linear charge density $E$ without using Gauss’s law.
Take a long thin wire $XY$ (as shown in the following figure) of uniform linear charge density $\lambda$
Consider a point $A$ at a perpendicular distance $l$ from the mid-point $O$ of the wire, as shown in the following figure.
Let $E$ be the electric field at point $A$ due to the wire,$ XY$.
Consider a small length element $d x$ on the wire section with $OZ =x$
Let $q$ be the charge on this piece.
$=\lambda d x$
Electric field due to the piece,
$d E=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\lambda d x}{(A Z)^{2}}$
However, $A Z=\sqrt{l^{2}+x^{2}}$
$\therefore d E=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\lambda d x}{\left(l^{2}+x^{2}\right)}$
The electric field is resolved into two rectangular components. $d E \cos \theta$ is the perpendicular component and $d E \sin \theta$ is the parallel component. When the whole wire is considered, the component $d E \sin \theta$ is cancelled. Only the perpendicular component $d E \cos \theta$ affects point $A$ Hence, effective electric field at point $A$ due to the element dx is $dE_{1}.$
In $\Delta AZO$
$\therefore d E_{1}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\lambda d x \cdot \cos \theta}{\left(l^{2}+x^{2}\right)} \dots \ldots(1)$
$\tan \theta=\frac{x}{l} \Rightarrow x=l \cdot \tan \theta \ldots \ldots (2)$
On differentiating equation $(2),$ we obtain $\frac{d x}{d \theta}=l \sec ^{2} \theta \Rightarrow d x$$=l \sec ^{2} \theta d \theta \ldots \ldots (3)$
From equation $(2),$ we have $x^{2}+l^{2}=l^{2} \tan ^{2} \theta+l^{2}=l^{2}\left(\tan ^{2} \theta+1\right)$$=l^{2} \sec ^{2} \theta \ldots \ldots (4)$
Putting equations $(3)$ and $(4)$ in equation $(1),$ we obtain
$d E_{1}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\lambda l \sec ^{2} \theta d \theta \cdot \cos \theta}{l^{2} \sec ^{2} \theta}$
$= \frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\lambda \cos \theta d \theta}{l} \ldots \ldots(5)$
The wire is so long that $\theta$ tends from $-\frac{\pi}{2}$ to $\frac{\pi}{2} .$
By integrating equation $(5),$ we obtain the value of field $E _{1}$ as,
$\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d E_{1}=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{4 \pi \epsilon_{0}} \frac{\lambda}{l} \cos \theta d \theta$
$\Rightarrow E_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{\lambda}{l}[\sin \theta]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$
$\Rightarrow E_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{\lambda}{l} \times 2$
$\Rightarrow E_{1}=\frac{\lambda}{2 \pi \epsilon_{0} l}$
Therefore, the electric field due to long wire is $\frac{\lambda}{2 \pi \epsilon_{0} l}$
Let there be a spherically symmetric charge distribution with charge density varying as $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, upto $r = R$ ,and $\rho (r) = 0$ for $r > R$ , where $r$ is the distance from the origin. The electric field at a distance $r(r < R)$ from the origin is given by
Consider a sphere of radius $R$ with charge density distributed as :
$\rho(r) =k r$, $r \leq R $
$=0$ for $r> R$.
$(a)$ Find the electric field at all points $r$.
$(b)$ Suppose the total charge on the sphere is $2e$ where e is the electron charge. Where can two protons be embedded such that the force on each of them is zero. Assume that the introduction of the proton does not alter the negative charge distribution.
A spherically symmetric charge distribution is considered with charge density varying as
$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
Where, $r ( r < R )$ is the distance from the centre $O$ (as shown in figure). The electric field at point $P$ will be.
Three infinitely long charge sheets are placed as shown in figure. The electric field at point $P$ is
Electric field at a point varies as ${r^o}$ for