14.Probability
medium

छुटियों में वीना ने चार शहरों $A , B , C$ और $D$ की यादृच्छया क्रम में यात्रा की। क्या प्रायिकता है कि उसने

$A$ की यात्रा $B$ से पहले की ?

A

$\frac{1}{2}$

B

$\frac{1}{2}$

C

$\frac{1}{2}$

D

$\frac{1}{2}$

Solution

The number of arrangements (orders) in which Veena can visit four cities $A,\,B,\,C$ or $D$ is $4 !$ i.e., $24 .$ Therefore, $n(S)=24$

since the number of elements in the sample space of the experiment is $24$ all of these outcomes are considered to be equally likely. A sample space for the experiment is

$S =\{ ABCD , \,ABDC , \,ACBD $, $ACDB , \,ADBC , \,ADCB$, $BACD,\, BADC,\, BDAC$, $BDCA, \,BCAD, ,BCDA,$ $CABD, \,CADB, \,CBDA$,  $CBAD, \,CDAB, \,CDBA,$  $DABC,\, DACB,\, DBCA$, $DBAC, \,DCAB, \,DCBA\}$

Let the event 'she visits $A$ before $B ^{\prime}$ be denoted by $E$

Therefore,

$E =\{ ABCD ,\, CABD$ ,$ DABC ,\, ABDC$ , $CADB ,\, DACB$ $ACBD ,\, ACDB , ADBC $, $CDAB ,\, DCAB ,\, ADCB \}$

Thus $P ( E )=\frac{n( E )}{n( S )}=\frac{12}{24}=\frac{1}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.