- Home
- Standard 11
- Mathematics
छुटियों में वीना ने चार शहरों $A , B , C$ और $D$ की यादृच्छया क्रम में यात्रा की। क्या प्रायिकता है कि उसने
$A$ की यात्रा $B$ से पहले और $B$ की $C$ से पहले की ?
$\frac{1}{6}$
$\frac{1}{6}$
$\frac{1}{6}$
$\frac{1}{6}$
Solution
The number of arrangements (orders) in which Veena can visit four cities $A,\,B,\,C$ or $D$ is $4 !$ i.e., $24 .$ Therefore, $n(S)=24$
since the number of elements in the sample space of the experiment is $24$ all of these outcomes are considered to be equally likely. A sample space for the experiment is
$S =\{ ABCD , \,ABDC , \,ACBD $, $ACDB , \,ADBC , \,ADCB$, $BACD,\, BADC,\, BDAC$, $BDCA, \,BCAD, ,BCDA,$ $CABD, \,CADB, \,CBDA$, $CBAD, \,CDAB, \,CDBA,$ $DABC,\, DACB,\, DBCA$, $DBAC, \,DCAB, \,DCBA\}$
Let the event 'Veena visits A before $B$ and $B$ before $C ^{*}$ be denoted by $F$.
Here $F =\{ ABCD , \,DABC , \,ABDC , \,ADBC \}$
Therefore, $P(F)=\frac{n(F)}{n(S)}=\frac{4}{24}=\frac{1}{6}$