One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is
$\frac{1}{{26}}$
$\frac{3}{{26}}$
$\frac{4}{{13}}$
$\frac{3}{{13}}$
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Both Anil and Ashima will not qualify the examination.
Let $A$ and $B $ be two events such that $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are
For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is
The probabilities of occurrence of two events are respectively $0.21$ and $0.49$. The probability that both occurs simultaneously is $0.16$. Then the probability that none of the two occurs is
Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cap B)$