One end of a copper rod of uniform cross-section and of length $3.1$ m is kept in contact with ice and the other end with water at $100°C $ . At what point along it's length should a temperature of $200°C$ be maintained so that in steady state, the mass of ice melting be equal to that of the steam produced in the same interval of time. Assume that the whole system is insulated from the surroundings. Latent heat of fusion of ice and vaporisation of water are $80 cal/gm$ and $540$ cal/gm respectively

86-33

  • A

    $40$ $cm$ from $100°C$ end

  • B

    $40 \,\,cm$ from $0°C$ end

  • C

    $125$ $cm$ from $100°C$ end

  • D

    $125$ $cm$ from $0°C$ end

Similar Questions

Wires $A$ and $B$ have identical lengths and have circular cross-sections. The radius of $A$ is twice the radius of $B$ $i.e.$ ${r_A} = 2{r_B}$. For a given temperature difference between the two ends, both wires conduct heat at the same rate. The relation between the thermal conductivities is given by

Two rods $A$ and $B$ of different materials are welded together as shown in  figure.Their thermal conductivities are $K_1$ and $K_2$  The thermal conductivity of the composite rod will be

  • [NEET 2017]

Two rods $A$ and $B$ of same cross-sectional are $A$ and length $l$ connected in series between a source $(T_1 = 100^o C)$ and a sink $(T_2 = 0^o C)$ as shown in figure. The rod is laterally insulated  If $G_A$ and $G_B$ are the temperature gradients across the rod $A$ and $B$, then 

What is the temperature (in $^oC$) of the steel-copper junction in the steady state of the system shown in Figure Length of the steel rod $=15.0\; cm ,$ length of the copper rod $=10.0\; cm ,$ temperature of the furnace $=300^{\circ} C ,$ temperature of the other end $=0^{\circ} C .$ The area of cross section of the steel rod is twice that of the copper rod. (Thermal conductivity of steel $=50.2 \;J s ^{-1} m ^{-1} K ^{-1} ;$ and of copper $\left.=385 \;J s ^{-1} m ^{-1} K ^{-1}\right)$

Find effective thermal resistance between $A$ & $B$ of cube made up of $12$ rods of same dimensions and shown given thermal conductivity. [ $l =$ length of rod, $a =$ cross section area of rod]