Starting from the rest, at the same time, a ring, a coin and a solid ball of same mass roll down an incline without slipping .The ratio of their translational kinetic energies at the bottom will be

  • A

    $1 : 1 : 1$

  • B

    $10 : 5 : 4$

  • C

    $21 : 28 : 30$

  • D

    None

Similar Questions

A flywheel is in the form of solid circular disc of mass $72\,\, kg$ and radius of  $0.5\,m$  and it takes $70\, r.p.m.$ , then the energy of revolution approximately is ....... $J.$

A small object of uniform density rolls up a curved surface with an initial velocity $v$. It reaches upto a maximum height of $3v^2/4g$ with respect to the initial position. The object is

  • [AIPMT 2013]

The moment of inertia of a body about a given axis is $1.2 \;kg m^{2}$. Initially, the body is at rest. In order to produce a rotational kinetic energy of $1500\; joule$, an angular acceleration of $25 \;rad s^{-2}$ must be applied about that axis for a duration of

  • [AIPMT 1990]

A solid sphere of mass $m$ and radius $R$ is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation $E_{sphere}/E_{cylinder}$ will be

  • [NEET 2016]

One twirls a circular ring (of mass $M$ and radius $R$ ) near the tip of one's finger as shown in Figure $1$ . In the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where the ring and the finger is in contact is $\mathrm{r}$. The finger rotates with an angular velocity $\omega_0$. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the ring and the finger is in contact (Figure $2$). The coefficient of friction between the ring and the finger is $\mu$ and the acceleration due to gravity is $g$.

(IMAGE)

($1$) The total kinetic energy of the ring is

$[A]$ $\mathrm{M} \omega_0^2 \mathrm{R}^2$   $[B]$ $\frac{1}{2} \mathrm{M} \omega_0^2(\mathrm{R}-\mathrm{r})^2$   $[C]$ $\mathrm{M \omega}_0^2(\mathrm{R}-\mathrm{r})^2$   $[D]$ $\frac{3}{2} \mathrm{M} \omega_0^2(\mathrm{R}-\mathrm{r})^2$

($2$) The minimum value of $\omega_0$ below which the ring will drop down is

$[A]$ $\sqrt{\frac{g}{\mu(R-r)}}$  $[B]$ $\sqrt{\frac{2 g}{\mu(R-r)}}$  $[C]$ $\sqrt{\frac{3 g}{2 \mu(R-r)}}$    $[D]$ $\sqrt{\frac{g}{2 \mu(R-r)}}$

Givin the answer quetion ($1$) and ($2$)

  • [IIT 2017]