One of the limit point of the coaxial system of circles containing ${x^2} + {y^2} - 6x - 6y + 4 = 0$, ${x^2} + {y^2} - 2x$ $ - 4y + 3 = 0$ is

  • A

    $( - 1,\,1)$

  • B

    $( - 1,\,2)$

  • C

    $( - 2,\,1)$

  • D

    $( - 2,\,2)$

Similar Questions

If the circles ${x^2} + {y^2} - 2ax + c = 0$ and ${x^2} + {y^2} + 2by + 2\lambda = 0$ intersect orthogonally, then the value of $\lambda $ is

Answer the following by appropriately matching the lists based on the information given in the paragraph

Let the circles $C_1: x^2+y^2=9$ and $C_2:(x-3)^2+(y-4)^2=16$, intersect at the points $X$ and $Y$. Suppose that another circle $C_3:(x-h)^2+(y-k)^2=r^2$ satisfies the following conditions :

$(i)$ centre of $C _3$ is collinear with the centres of $C _1$ and $C _2$

$(ii)$ $C _1$ and $C _2$ both lie inside $C _3$, and

$(iii)$ $C _3$ touches $C _1$ at $M$ and $C _2$ at $N$.

Let the line through $X$ and $Y$ intersect $C _3$ at $Z$ and $W$, and let a common tangent of $C _1$ and $C _3$ be a tangent to the parabola $x^2=8 \alpha y$.

There are some expression given in the $List-I$ whose values are given in $List-II$ below:

$List-I$ $List-II$
$(I)$ $2 h + k$ $(P)$ $6$
$(II)$ $\frac{\text { Length of } ZW }{\text { Length of } XY }$ $(Q)$ $\sqrt{6}$
$(III)$ $\frac{\text { Area of triangle } MZN }{\text { Area of triangle ZMW }}$ $(R)$ $\frac{5}{4}$
$(IV)$ $\alpha$ $(S)$ $\frac{21}{5}$
  $(T)$ $2 \sqrt{6}$
  $(U)$ $\frac{10}{3}$

($1$) Which of the following is the only INCORRECT combination?

$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$

($2$) Which of the following is the only CORRECT combination?

$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2019]

A circle with radius $12$ lies in the first quadrant and touches both the axes, another circle has its centre at $(8,9)$ and radius $7$. Which of the following statements is true

Let $Z$ be the set of all integers,

$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+\mathrm{y}^{2} \leq 4\right\}$

$\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}: \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4\right\} \text { and }$

$\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2} \leq 4\right\}$

If the total number of relation from $\mathrm{A} \cap \mathrm{B}$ to $\mathrm{A} \cap \mathrm{C}$ is $2^{\mathrm{p}}$, then the value of $\mathrm{p}$ is :

  • [JEE MAIN 2021]

If the circles ${x^2}\, + {y^2}\, - 16x\, - 20y\, + \,164\,\, = \,\,{r^2}$ and ${(x - 4)^2} + {(y - 7)^2} = 36$ intersect at two distinct points, then

  • [JEE MAIN 2019]