The number of common tangents to the circles ${x^2} + {y^2} - x = 0,\,{x^2} + {y^2} + x = 0$ is
$2$
$1$
$4$
$3$
The centre$(s)$ of the circle$(s)$ passing through the points $(0, 0) , (1, 0)$ and touching the circle $x^2 + y^2 = 9$ is/are :
Two circles whose radii are equal to $4$ and $8$ intersects at right angles. The length of their common chord is:-
The common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 + 6x + 8y - 24 = 0$ also passes through the point
Consider a family of circles which are passing through the point $(- 1, 1)$ and are tangent to $x-$ axis. If $(h, k)$ are the coordinate of the centre of the circles, then the set of values of $k$ is given by the interval
The range of values of $'a'$ such that the angle $\theta$ between the pair of tangents drawn from the point $(a, 0)$ to the circle $x^2 + y^2 = 1$ satisfies $\frac{\pi }{2} < \theta < \pi$ is :