The number of common tangents to the circles ${x^2} + {y^2} - x = 0,\,{x^2} + {y^2} + x = 0$ is

  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $3$

Similar Questions

The equation of radical axis of the circles $2{x^2} + 2{y^2} - 7x = 0$ and ${x^2} + {y^2} - 4y - 7 = 0$ is

The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$

The circles ${x^2} + {y^2} = 9$ and ${x^2} + {y^2} - 12y + 27 = 0$ touch each other. The equation of their common tangent is 

If a circle passes through the point $(1, 2)$ and cuts the circle ${x^2} + {y^2} = 4$ orthogonally, then the equation of the locus of its centre is

Two circle ${x^2} + {y^2} = ax$ and ${x^2} + {y^2} = {c^2}$ touch each other if 

  • [AIEEE 2011]