If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is
$x = 2n\pi - \frac{\pi }{{12}}$ or $x = 2n\pi + \frac{{7\pi }}{{12}}$
$x = n\pi \pm \frac{\pi }{{12}}$
$x = 2n\pi + \frac{\pi }{{12}}$ or $x = 2n\pi - \frac{{7\pi }}{{12}}$
$x = n\pi + \frac{\pi }{{12}}$ or $x = n\pi - \frac{{7\pi }}{{12}}$
If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to
The number of all possible values of $\theta$, where $0<\theta<\pi$, for which the system of equations
$ (y+z) \cos 3 \theta=(x y z) \sin 3 \theta $
$ x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z} $
$ (x y z) \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta$ have a solution $\left(\mathrm{x}_0, \mathrm{y}_0, \mathrm{z}_0\right)$ with $\mathrm{y}_0 \mathrm{z}_0 \neq 0$, is
If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta $ is
The number of solution of the equation $\tan x + \sec x = 2\cos x$ lying in the interval $(0,2\pi )$ is