If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is

  • A

    $x = 2n\pi - \frac{\pi }{{12}}$ or $x = 2n\pi + \frac{{7\pi }}{{12}}$

  • B

    $x = n\pi \pm \frac{\pi }{{12}}$

  • C

    $x = 2n\pi + \frac{\pi }{{12}}$ or $x = 2n\pi - \frac{{7\pi }}{{12}}$

  • D

    $x = n\pi + \frac{\pi }{{12}}$ or $x = n\pi - \frac{{7\pi }}{{12}}$

Similar Questions

If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is

If $\tan (\cot x) = \cot (\tan x),$ then $\sin 2x =$

Find the general solution of the equation $\cos 4 x=\cos 2 x$

The number of real solutions $x$ of the equation $\cos ^2(x \sin (2 x))+\frac{1}{1+x^2}=\cos ^2 x+\sec ^2 x$ is

  • [KVPY 2018]

The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is

  • [KVPY 2019]