समीकरण $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ के हलों में से एक निम्नलिखित अन्तराल में है
$\left(0^{\circ}, 10^{\circ}\right]$
$\left(10^{\circ}, 20^{\circ}\right)$
$\left(20^{\circ}, 30^{\circ}\right)$
$\left(30^{\circ}, 40^{\circ}\right]$
$(x, y)$ के कितने युग्म समीकरणों $\sin x + \sin y = \sin (x + y)$ तथा $|x| + |y| = 1$ को संतुष्ट करते हैं
यदि $1 + \cot \theta = {\rm{cosec}}\theta $, तो $\theta $ का व्यापक मान है
यदि $1 + \sin x + {\sin ^2}x + .....$ $\infty $ तक $ = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ तो
यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ तब $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
यदि समीकरण $4 \cos \theta+5 \sin \theta=1$. का हल $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ है, तो $\tan \alpha$ का मान है