- Home
- Standard 11
- Mathematics
समीकरण $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ के हलों में से एक निम्नलिखित अन्तराल में है
$\left(0^{\circ}, 10^{\circ}\right]$
$\left(10^{\circ}, 20^{\circ}\right)$
$\left(20^{\circ}, 30^{\circ}\right)$
$\left(30^{\circ}, 40^{\circ}\right]$
Solution
(b)
Given,
$8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta =0$
$2\left(4 \sin ^3 \theta\right)-7 \sin \theta+\sqrt{3} \cos \theta =0$
$2(3 \sin \theta-\sin 3 \theta)-7 \sin \theta$
$+\sqrt{3} \cos \theta =0$
$6 \sin \theta-2 \sin 3 \theta-7 \sin \theta$
$+\sqrt{3} \cos \theta =0$
$\sqrt{3} \cos \theta-\sin \theta-2 \sin 3 \theta =0$
$\frac{\sqrt{3}}{2} \cos \theta-\frac{1}{2} \sin \theta =\sin 3 \theta$
$\sin \left(\frac{\pi}{3}-\theta\right) =\sin 3 \theta$
$\frac{\pi}{3}-\theta=3 \theta \Rightarrow 4 \theta=60^{\circ} \Rightarrow \theta =15^{\circ}$
$\theta \in\left(10^{\circ}, 20^{\circ}\right]$