One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
$\left( {0,\frac{\pi }{2}} \right)$
$\left( { - \frac{\pi }{2},0} \right)$
$\left( { \frac{\pi }{2},\pi } \right)$
$\left( {\pi ,\frac{{3\pi }}{2}} \right)$
If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are
The number of solutions to $\sin x=\frac{6}{x}$ with $0 \leq x \leq 12 \pi$ is
The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta = 2,$ is
$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $
Let $f:[0,2] \rightarrow R$ be the function defined by
$f ( x )=(3-\sin (2 \pi x )) \sin \left(\pi x -\frac{\pi}{4}\right)-\sin \left(3 \pi x +\frac{\pi}{4}\right)$
If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is. . . . . . . . .