The general value of $\theta $ satisfying ${\sin ^2}\theta + \sin \theta = 2$ is
$n\pi + {( - 1)^n}\frac{\pi }{6}$
$2n\pi + \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{2}$
$n\pi + {( - 1)^n}\frac{\pi }{3}$
The number of distinct solutions of $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$
If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
The set of all values of $\lambda$ for which the equation $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$