One root of the following given equation $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ is
$1$
$3$
$5$
$7$
Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :
If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
If $|x - 2| + |x - 3| = 7$, then $x =$
The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$ is
The number of distinct real roots of the equation $x ^{7}-7 x -2=0$ is