Planck's constant $h$, speed of light $c$ and gravitational constant $G$ are used to form a unit of length $L$ and a unit of mass $M$. Then the correct option$(s)$ is(are)
$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$
$(A,B,C)$
$(A,B,D)$
$(A,C,D)$
$(B,C,D)$
The $SI$ unit of a physical quantity is pascal-second. The dimensional formula of this quantity will be ..............
A famous relation in physics relates 'moving mass' $m$ to the 'rest mass' $m_{0}$ of a particle in terms of its speed $v$ and the speed of light, $c .$ (This relation first arose as a consequence of special relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where to put the constant $c$. He writes:
$m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$
Guess where to put the missing $c$
The dimensional formula of permeability of free space $\mu_0$ is
Which of the following is dimensionally incorrect?
The dimensions of ${\left( {{\mu _0}{\varepsilon _0}} \right)^{ - \frac{1}{2}}}$ are