The workdone by a gas molecule in an isolated system is given by, $W =\alpha \beta^{2} e ^{-\frac{ x ^{2}}{\alpha kT }},$ where $x$ is the displacement, $k$ is the Boltzmann constant and $T$ is the temperature, $\alpha$ and $\beta$ are constants. Then the dimension of $\beta$ will be
$\left[ M L ^{2} T ^{-2}\right]$
$\left[ M L T ^{-2}\right]$
$\left[ M ^{2} L T ^{2}\right]$
$\left[ M ^{0} L T ^{0}\right]$
$A$ and $B$ possess unequal dimensional formula then following operation is not possible in any case:-
Which of the following is dimensionally incorrect?
In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .
Match the following two coloumns
Column $-I$ | Column $-II$ |
$(A)$ Electrical resistance | $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$ |
$(B)$ Electrical potential | $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$ |
$(C)$ Specific resistance | $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$ |
$(D)$ Specific conductance | $(s)$ None of these |