Point charge $q$ moves from point $P$ to point $S$ along the path $PQRS$ (figure shown) in a uniform electric field $E$ pointing coparallel to the positive direction of the $X - $axis. The coordinates of the points $P,\,Q,\,R$ and $S$ are $(a,\,b,\,0),\;(2a,\,0,\,0),\;(a,\, - b,\,0)$ and $(0,\,0,\,0)$ respectively. The work done by the field in the above process is given by the expression

116-1

  • [IIT 1989]
  • A

    $qEa$

  • B

    $ - qEa$

  • C

    $qEa\sqrt 2 $

  • D

    $qE\sqrt {[{{(2a)}^2} + {b^2}]} $

Similar Questions

Two copper balls, each weighing $10\,g$ are kept in air $10\, cm$ apart. If one electron from every ${10^6}$ atoms is transferred from one ball to the other, the coulomb force between them is (atomic weight of copper is $63.5$)

$ + 2\,C$ and $ + 6\,C$ two charges are repelling each other with a force of $12\,N$. If each charge is given $ - 2\,C$ of charge, then the value of the force will be

Four charge $Q _1, Q _2, Q _3$, and $Q _4$, of same magnitude are fixed along the $x$ axis at $x =-2 a - a ,+ a$ and $+2 a$, respectively. A positive charge $q$ is placed on the positive $y$ axis at a distance $b > 0$. Four options of the signs of these charges are given in List-$I$ . The direction of the forces on the charge q is given in List-$II$ Match List-$1$ with List-$II$ and select the correct answer using the code given below the lists.$Image$

List-$I$ List-$II$
$P.$ $\quad Q _1, Q _2, Q _3, Q _4$, all positive $1.\quad$ $+ x$
$Q.$ $\quad Q_1, Q_2$ positive $Q_3, Q_4$ negative $2.\quad$ $-x$
$R.$ $\quad Q_1, Q_4$ positive $Q_2, Q_3$ negative $3.\quad$ $+ y$
$S.$ $\quad Q_1, Q_3$ positive $Q_2, Q_4$ negative $4.\quad$ $-y$

  • [IIT 2014]

Two point charges placed at a certain distance $r$ in air exert a force $F$ on each other. Then the distance $r'$ at which these charges will exert the same force in a medium of dielectric constant $k$ is given by

The law, governing the force between electric charges is known as