Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $W$. Here $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$. The velocity of particle at time $t = 2\, sec$. will be ........... $\mathrm{m}/ \mathrm{s}$
$1$
$4$
$2$
$2\sqrt 2$
If $F = 2x^2 -3x -2$, then choose correct option
The potential energy of a diatomic molecule is given by $U = \frac{A}{{{r^{12}}}} - \frac{B}{{{r^6}}}$ . $A$ and $B$ are positive constants. The distance $r$ between them at equilibrium is
A light and a heavy body have equal kinetic energy. Which one has a greater momentum
A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $v$. The force on the body is $\frac{{m{v^2}}}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle
The force acting on a body moving along $x-$ axis varies with the position of the particle as shown in the figure. The body is in stable equilibrium at