Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $W$. Here $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$. The velocity of particle at time $t = 2\, sec$. will be ........... $\mathrm{m}/ \mathrm{s}$

  • A

    $1$

  • B

    $4$

  • C

    $2$

  • D

    $2\sqrt 2$

Similar Questions

A particle moves along $x$-axis from $x=0$ to $x=5$ metre under the influence of a force $F=7-2 x+3 x^2$. The work done in the process is .............

A $15\, g$ ball is shot from a spring gun whose spring has a force constant of $600\, N\, m$. The spring is compressed by $3\, cm$. The greatest possible velocity of the ball for this compression is ............. $\mathrm{m}/ \mathrm{s}$   $(g = 10\, m/s^2$)

A neutron travelling with a velocity $v$ and $K.E.$ $E $ collides perfectly elastically head on with the nucleus of an atom of mass number $A$ at rest. The fraction of total energy retained by neutron is

A curved surface is shown in figure. The portion $BCD$ is free of friction. There are three spherical balls of identical radii and masses. Balls are released from rest one by one from $A$ which is at a slightly greater height than $C$.

With the surface $AB$, ball $1$ has large enough friction to cause rolling down without slipping; ball $2$ has a small friction and ball $3$ has a negligible friction.

$(a)$ For which balls is total mechanical energy conserved ?

$(b)$ Which ball $(s)$ can reach $D$ ?

$(c)$ For ball which do not reach $D$, which of the balls can reach back $A$ ?

A body moving with speed $v$ in space explodes into two piece of masses in the ratio $1 : 3.$ If the smaller piece comes to rest, the speed of the other piece is