A spherical body of mass $m$ and radius $r$ is allowed to fall in a medium of viscosity $\eta $. The time in which the velocity of the body increases from zero to $0.63$ times the terminal velocity $(v)$ is called time constant $(\tau )$. Dimensionally $\tau $ can be represented by
Applying the principle of homogeneity of dimensions, determine which one is correct. where $\mathrm{T}$ is time period, $\mathrm{G}$ is gravitational constant, $M$ is mass, $r$ is radius of orbit.
If energy $(E),$ velocity $(V)$ and time $(T)$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be