सिद्ध कीजिए कि $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
By Binomial Theorem,
$\sum\limits_{r = 0}^n {{\,^n}{C_r}{a^{n - r}}{b^r} = {{\left( {a + b} \right)}^n}} $
By putting $b=3$ and $a=1$ in the above equation, we obtain
$\sum\limits_{r = 0}^n {{\,^n}{C_r}{{\left( 1 \right)}^{n - r}}{{\left( 3 \right)}^r} = {{\left( {1 + 3} \right)}^n}} $
$ \Rightarrow \sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
Hence proved.
${\left( {\sqrt x - \frac{2}{x}} \right)^{18}}$ में $x$ से स्वतंत्र पद है
${(1 + x)^{18}}$ के प्रसार में यदि $(2r + 4)$ वें तथा $(r - 2)$ वें पदों के गुणांक बराबर हैं, तब $r =$
$\left(\frac{1}{60}-\frac{x^{8}}{81}\right) \cdot\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}$ के प्रसार में $x$ से स्वतंत्र पद है
माना $2^{(\mathrm{x}-2) \log _2 3}$ की बढ़ती घातों में $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$, के द्विपद प्रसार में छठा पद $21$ है। यदि इस प्रसार में दूसरा, तीसरा तथा चौथा द्विपद गुणांक एक $A.P.$ के क्रमशः पहला, तीसरा तथा पाँचवा पद हैं, तो $\mathrm{x}$ के सभी संभव मानों के वर्गों का योग है____________.
यदि $x$ की घातों (powers) में, व्यंजक $\left(1+ ax + bx ^{2}\right)$ $(1-3 x)^{15}$ के प्रसार में $x^{2}$ तथा $x^{3}$ दोनों के गुणांक शून्य के बराबर हैं, तो क्रमित युग्म $( a , b )$ बराबर है