${(1 + x)^{10}}$ के विस्तार में मध्य पद का गुणांक होगा
$\frac{{10!}}{{5!\,6!}}$
$\frac{{10\,!}}{{{{(5\,!)}^2}}}$
$\frac{{10\,!}}{{5\,!\,7\,!}}$
इनमें से कोई नहीं
$m$ का धनात्मक मान ज्ञात कीजिए जिसके लिए $(1+x)^{m}$ के प्रसार में $x^{2}$ का गुणांक $6$ हो।
${(3 + 2x)^{50}}$ के विस्तार में महत्तम पद है, जहाँ $x = \frac{1}{5}$
यदि ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ के प्रसार में $(r + 1)$ वें पद में $a$ तथा $b$ की समान घातें हैं, तब $r$ का मान है
$\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।
यदि $(1+a)^{n}$ के प्रसार में तीन क्रमागत पदों के गुणांक $1: 7: 42$ के अनुपात में हैं तो $n$ का मान ज्ञात कीजिए।