$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Using Binomial Theorem, the given expression $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ can be expanded as

$\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}$

$ = {\,^3}{C_0}{\left( {3{x^2} - 2ax} \right)^3} + {\,^3}{C_1}{\left( {3{x^2} - 2ax} \right)^2}\left( {3{a^2}} \right) + {\,^3}{C_2}\left( {3{x^2} - 2ax} \right){\left( {3{a^2}} \right)^2} + {\,^3}{C_3}{\left( {3{a^2}} \right)^3}$

$=\left(3 x^{2}-2 a x\right)^{3}+3\left(9 x^{4}-12 a x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)+27 a^{6}$

$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$            ...........$(1)$

Again by using Binomial Theorem, we obtain

$\left(3 x^{2}-2 a x\right)^{3}$

$ = {\,^3}{C_0}{\left( {3{x^2}} \right)^3} - {\,^3}{C_1}{\left( {3{x^2}} \right)^2}(2ax) + {\,^3}{C_2}\left( {3{x^2}} \right){(2ax)^2} - {\,^3}{C_3}{(2ax)^3}$

$=27 x^{6}-3\left(9 x^{4}\right)(2 a x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{3} x^{3}$

$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}$           ............$(2)$

From $(1)$ and $(2),$ we obtain

$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$

$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$=27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

Similar Questions

यदि ${(1 + x)^{20}}$ के प्रसार में $r$ वें एवं $(r + 4)$ वें पदों के गुणांक बराबर हैं, तो $r$ का मान होगा

यदि $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ के $x$ की घातों में प्रसार में $x^{3}$ तथा $x^{4}$, दोनों के गुणांक शून्य हैं, तो $(a, b)$ बराबर है :

  • [JEE MAIN 2014]

 ${(1 + x)^{2n}}$ के विस्तार में मध्य पद होगा

${(x + a)^n}$ के विस्तार में दूसरा, तीसरा तथा चौथा पद क्रमश:  $240, 720$ और $1080$ हैं, तो $n$ का मान होगा

माना $\alpha>0$ न्यूनतम संख्या है, जिसके लिए $\left(\mathrm{x}^{\frac{2}{3}}+\frac{2}{\mathrm{x}^3}\right)^{30}$ के प्रसार का एक पद $\beta \mathrm{x}^{-\alpha}, \beta \in \mathbb{N}$ है तो $\alpha$ बराबर है

  • [JEE MAIN 2023]