सिद्ध कीजिए कि $\Delta=\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$
Solution Applying operations $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$ to the given determinant $\Delta$, we have
$\Delta = \left| {\begin{array}{*{20}{c}}
a&{a + b}&{a + b + c} \\
0&a&{2a + b} \\
0&{3a}&{7a + 3b}
\end{array}} \right|$
Now applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{2},$ we get
$\Delta=\left|\begin{array}{ccc}
a & a+b & a+b+c \\
0 & a & 2 a+b \\
0 & 0 & a
\end{array}\right|$
Expanding along $C_{1},$ we obtain
$\Delta = a\left| {\begin{array}{*{20}{c}}
a&{2a + b} \\
0&a
\end{array}} \right| + 0 + 0$
$ = a\left( {{a^2} - 0} \right) = a\left( {{a^2}} \right) = {a^3}$
यदि $\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+\lambda)^{2} & (b+\lambda)^{2} & (c+\lambda)^{2} \\ (a-\lambda)^{2} & (b-\lambda)^{2} & (c-\lambda)^{2}\end{array}\right|=k \lambda\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|, \lambda \neq 0$ है, तो $k$ बराबर है
यदि $ab + bc + ca = 0$ और $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$, तो $x$ का एक मान होगा
सारणिक $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$, if $a,b,c$
यदि $f(x) = \left| {\begin{array}{*{20}{c}}{x - 3}&{2{x^2} - 18}&{3{x^3} - 81}\\{x - 5}&{2{x^2} - 50}&{4{x^3} - 500}\\1&2&3\end{array}} \right|$ then $f(1).f(3) + f(3).f(5) + f(5).f(1)$=
यदि $a, b, c$ धनात्मक और भिन्न हैं तो दिखाइए कि सारणिक
$\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ का मान ऋणात्मक है।