સાબિત કરો કે : $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that

$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right), \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$

$\therefore$ $L.H.S.$ $=\sin ^{2} 6 x-\sin ^{2} 4 x$

$=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)$

$=\left[2 \sin \left(\frac{6 x+4 x}{2}\right) \cos \left(\frac{6 x-4 x}{2}\right)\right]\left[2 \cos \left(\frac{6 x+4 x}{2}\right) \cdot \sin \left(\frac{6 x-4 x}{2}\right)\right]$

$=(2 \sin 5 x \cos x)(2 \cos 5 x \sin x)=(2 \sin 5 x \cos 5 x)(2 \sin x \cos x)$

$=\sin 10 x \sin 2 x$

$= R . H.S$

Similar Questions

સાબિત કરો કે : $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $

$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $

$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $

  • [IIT 1986]

જો $\sin A = n\sin B,$ તો $\frac{{n - 1}}{{n + 1}}\tan \,\frac{{A + B}}{2} = $