સાબિત કરો કે : $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$
It is known that
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right), \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$
$\therefore$ $L.H.S.$ $=\sin ^{2} 6 x-\sin ^{2} 4 x$
$=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)$
$=\left[2 \sin \left(\frac{6 x+4 x}{2}\right) \cos \left(\frac{6 x-4 x}{2}\right)\right]\left[2 \cos \left(\frac{6 x+4 x}{2}\right) \cdot \sin \left(\frac{6 x-4 x}{2}\right)\right]$
$=(2 \sin 5 x \cos x)(2 \cos 5 x \sin x)=(2 \sin 5 x \cos 5 x)(2 \sin x \cos x)$
$=\sin 10 x \sin 2 x$
$= R . H.S$
જો $\theta = 3\, \alpha$ અને $sin\, \theta =$ $\frac{a}{{\sqrt {{a^2}\,\, + \,\,{b^2}} }}$. થાય તો $a \,cosec\, \alpha - b \,sec\, \alpha$ ની કિમત ............. થાય
$cot\, x + cot\, (60^o + x) + cot\, (120^o + x)$ =
સાબિત કરો કે : $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$
જો $A + B + C = \frac{{3\pi }}{2},$ તો $\cos 2A + \cos 2B + \cos 2C = $
જો $\alpha + \beta + \gamma = 2\pi ,$ તો