- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
medium
Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$
Option A
Option B
Option C
Option D
Solution
It is known that
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right), \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$
$\therefore$ $L.H.S.$ $=\sin ^{2} 6 x-\sin ^{2} 4 x$
$=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)$
$=\left[2 \sin \left(\frac{6 x+4 x}{2}\right) \cos \left(\frac{6 x-4 x}{2}\right)\right]\left[2 \cos \left(\frac{6 x+4 x}{2}\right) \cdot \sin \left(\frac{6 x-4 x}{2}\right)\right]$
$=(2 \sin 5 x \cos x)(2 \cos 5 x \sin x)=(2 \sin 5 x \cos 5 x)(2 \sin x \cos x)$
$=\sin 10 x \sin 2 x$
$= R . H.S$
Standard 11
Mathematics