સાબિત કરો કે : $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$
It is known that
$\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right), \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$
$\therefore$ $L.H.S.$ $=\cos ^{2} 2 x-\cos ^{2} 6 x$
$=(\cos 2 x+\cos 6 x)(\cos 2 x-6 x)$
${ = \left[ {2\cos \left( {\frac{{2x + 6x}}{2}} \right)\cos \left( {\frac{{2x - 6x}}{2}} \right)} \right]}$
${\left[ { - 2\sin \left( {\frac{{2x + 6x}}{2}} \right)\sin \left( {\frac{{2x - 6x}}{2}} \right)} \right]}$
${ = [2\cos 4x\cos ( - 2x)][ - 2\sin 4x\sin ( - 2x)]}$
${ = [2\cos 4x\cos 2x][ - 2\sin 4x( - \sin 2x)]}$
${ = (2\sin 4x\cos 4x)(2\sin 2x\cos 2x)}$
${ = \sin 8x\sin 4x = R.H.S}$
જો $2\sec 2\alpha = \tan \beta + \cot \beta ,$ તો $\alpha + \beta =. . . .$
જો $a\,\cos 2\theta + b\,\sin 2\theta = c$ ના બીજ $\alpha$ અને $\beta$ હોય તો $\tan \alpha + \tan \beta = . . .$
જો $\sin \theta+\cos \theta=\frac{1}{2}$ આપેલ હોય તો $16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ ની કિમંત મેળવો.
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
જો $a\tan \theta = b$, તો $a\cos 2\theta + b\sin 2\theta = $