3.Trigonometrical Ratios, Functions and Identities
easy

સાબિત કરો કે : $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$

Option A
Option B
Option C
Option D

Solution

It is known that 

$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$

$\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$

$\therefore$ $L.H.S.$ $=\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}$

$=\frac{2 \sin \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}{2 \cos \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}$

$=\frac{\sin 2 x}{\cos 2 x}$

$=\tan 2 x$

$= R . H.S$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.