જો $A, B, C$ ત્રિકોણના ખૂણા હોય તો $\sin 2A + \sin 2B - \sin 2C$ મેળવો.
$4\sin A\,\,\cos B\,\,\cos C$
$4\cos A$
$4\sin A\,\cos A$
$4\cos A\,\cos B\,\sin C$
જો $A, B, C$ એ ત્રણ ખૂણા છે કે જેથી $sinA + sinB + sinC = 0,$ થાય તો
$ \frac {sinAsin BsinC}{(sin 3A+ sin 3B+ sin 3C)}$ (wherever definied)=
$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $
જો ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ તો $K =$
$cotx - cosx = 1 - cotx. cosx$ માટે $ x \in \left[ {0,2\pi } \right]$ ............ કિમતો મળે
જો $A + B + C = {180^o},$ તો $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = . . .$