- Home
- Standard 12
- Mathematics
The determinant $\left| {\begin{array}{*{20}{c}}{1\, + \,a\, + \,x}&{a\, + \,y}&{a\, + \,z}\\{b\, + \,x}&{1\, + \,b\, + \,y}&{b\, + \,z}\\{c\, + \,x}&{c\, + \,y}&{1\, + \,c\, + \,z}\end{array}} \right|$ $=$
$(1 + a + b + c) (1 + x + y + z) - 3 (ax + by + cz)$
$a (x + y) + b (y + z) + c (z + x) - (xy + yz + zx)$
$x (a + b) + y (b + c) + z (c + a) - (ab + bc + ca)$
none of these
Solution
$1 + a + b + c = k$ and use $R_1 + R_2 + R_3$ we get
$D =$ $\left| {\,\,\begin{array}{*{20}{c}}{k + 3x}&{k + 3y}&{k + 3z}\\{b + x}&{1 + b + y}&{b + z}\\{c + x}&{c + y}&{1 + c + z}\end{array}\,} \right|$
$= k$ $\left|{\,\begin{array}{*{20}{c}}1&1&1\\{b + x}&{1 + b + y}&{b + z}\\{c + x}&{c + y}&{1 + c +z}\end{array}\,} \right|$ +$3\,\,\,\left| {\,\begin{array}{*{20}{c}}x&y&z\\{b + x}&{1 + b + y}&{b + z}\\{c + x}&{c + y}&{1 + c + z}\end{array}\,} \right|$
now proceed