सिद्ध कीजिए कि $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\Delta=\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|$

Taking out common factors $a, b$ and $c$ from $C_{1}, C_{2},$ and $C_{3},$ we have:

$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b & b+c & c\end{array}\right|$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:

$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ b & b-c & -c \\ b-a & b & -a\end{array}\right|$

Applying $R_{2} \rightarrow R_{2}+R_{1},$ we have:

$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b-a & b & -a\end{array}\right|$

Applying $R_{3} \rightarrow R_{3}+R_{2},$ we have:

$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ 2 b & 2 b & 0\end{array}\right|$

$=2 a b^{2} c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ 1 & 1 & 0\end{array}\right|$

Applying $C_{2} \rightarrow C_{2}-C_{1},$ we have:

$\Delta=2 a b^{2} c\left|\begin{array}{ccc}a & c-a & a+c \\ a+b & -a & a \\ 1 & 0 & 0\end{array}\right|$

Expanding along $R_{3},$ we have:

$\Delta=2 a b^{2} c[a(c-a)+a(a+c)]$

$=2 a b^{2} c\left[a c-a^{2}+a^{2}+a c\right]$

$=2 a b^{2} c(2 a c)$

$=4 a^{2} b^{2} c^{2}$

Hence, the given result is proved.

Similar Questions

यदि $\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+\lambda)^{2} & (b+\lambda)^{2} & (c+\lambda)^{2} \\ (a-\lambda)^{2} & (b-\lambda)^{2} & (c-\lambda)^{2}\end{array}\right|=k \lambda\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|, \lambda \neq 0$ है, तो $k$ बराबर है

  • [JEE MAIN 2014]

सारणिकों के गुणधर्मो का प्रयोग करके निम्नलिखित प्रश्न को सिद्ध कीजिए :

$\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x)$

$\left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{ab}&{ca}\\{ab}&{{b^2} + {x^2}}&{bc}\\{ca}&{bc}&{{c^2} + {x^2}}\end{array}\,} \right|$ का भाजक है  

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 x+k)$

$\left| {\,\begin{array}{*{20}{c}}{441}&{442}&{443}\\{445}&{446}&{447}\\{449}&{450}&{451}\end{array}\,} \right|$ का मान है