ત્રણ ઘટનાઓ $A, B$ અને $C,$ માટે $P($ માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $) = {p^2},$ કે જ્યાં $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.
$\frac{{3p + 2{p^2}}}{2}$
$\frac{{p + 3{p^2}}}{4}$
$\frac{{p + 3{p^2}}}{2}$
$\frac{{3p + 2{p^2}}}{4}$
એક થેલામાં $4$ લાલ, $5$ સફેદ અને $6$ કાળા દડા છે. ત્રણ દડા યાર્દચ્છિક રીતે પસંદ કરવામાં આવે, તો તેઓ ભિન્ન રંગના હોવાથી સંભાવના કેટલી થાય ?
$P(A \cup B) = P(A \cap B)$ તો જ શક્ય બને જો $P(A)$ અને $P(B)$ વચ્ચે .. . . પ્રકારનો સંબંધ બને.
જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$ અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : બંનેમાંથી માત્ર એક પરીક્ષામાં પાસ થશે.
જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો.