सिद्ध कीजिए कि यदि $E$ और $F$ दो स्वतंत्र घटनाएँ हैं तो $E$ और $F ^{\prime}$ भी स्वतंत्र होंगी।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $\mathrm{E}$ and $\mathrm{F}$ are independent, we have

$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$       ......... $(1)$

From the venn diagram in Fig it is clear that $E \cap \mathrm{F}$ and $\mathrm{E} \cap \mathrm{F}^{\prime}$ are mutually exclusive events and also $\mathrm{E}=(\mathrm{E} \cap \mathrm{F}) \cup\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)$

Therefore        $\quad P(E)=P(E \cap F)+P\left(E \cap F^{\prime}\right)$

or                   $P\left(E \cap F^{\prime}\right)=P(E)-P(E \cap F)$

                    $=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$    (by $(1))$

                   $=\mathrm{P}(\mathrm{E})(1-\mathrm{P}(\mathrm{F}))$

                   $=\mathrm{P}(\mathrm{E})$ . $\mathrm{P}\left(\mathrm{F}^{\prime}\right)$

Hence, $\mathrm{E}$ and $\mathrm{F}^{\prime}$ are independent

863-s41

Similar Questions

ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?

$E :$ 'निकाला गया पत्ता एक बादशाह या एक बेगम है'

$F :$ 'निकाला गया पत्ता एक बेगम या एक गुलाम है'

यदि $A$ तथा $B$ घटनायें इस प्रकार हैं कि $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ तब $P(\bar A \cap B) =$

  • [AIEEE 2002]

यदि $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ एवं $P(A \cap B) = \frac{7}{{12}},$ तो $P\,(A' \cap B')$ का मान है

यदि ${A_1},\,{A_2},...{A_n}$ कोई $n$ घटनायें हैं, तो

एक अनभिनत (unbiased) सिक्के को उछाला जाता है। चित्त आने पर अनभिनत पासों के एक युग्म को उछाला जाता है तथा उन पर आई संख्याओं का योग नोट किया जाता है। यदि सिक्के पर पट् आता है, तो $9$ कार्डो जिन पर संख्याएं $1,2,3, \ldots, 9$ अंकित हैं, की एक अच्छी प्रकार से फेंटी गई गड्डी में से एक कार्ड निकाल कर उस पर आई संख्या नोट की जाती है। इस प्रकार नोट की गई संख्या $7$ अथवा $8$ होने की प्रायिकता है

  • [JEE MAIN 2019]