निम्नलिखित को सिद्ध कीजिए

$\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=\cos 6 x$

$=\cos 3(2 x)$

$=4 \cos ^{3} 2 x-3 \cos 2 x\left[\cos 3 A=4 \cos ^{3} A-3 \cos A\right]$

$=4\left[\left(2 \cos ^{2} x-1\right)^{3}-3\left(2 \cos ^{2} x-1\right)\right]\left[\cos 2 x=2 \cos ^{2} x-1\right]$

$=4\left[\left(2 \cos ^{2} x\right)^{3}-(1)^{3}-3\left(2 \cos ^{2} x\right)^{2}+3\left(2 \cos ^{2} x\right)\right]-6 \cos ^{2} x+3$

$=4\left[8 \cos ^{6} x-1-12 \cos ^{4} x+6 \cos ^{2} x\right]-6 \cos ^{2} x+3$

$=32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3$

$=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

$=\operatorname{R.H.S}$

Similar Questions

यदि $\sin 6\theta = 32{\cos ^5}\theta \sin \theta - 32{\cos ^3}\theta \sin \theta + 3x,$ तब  $x = $

निम्नलिखित को सिद्ध कीजिए

$\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$

$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $

  • [IIT 1977]

निम्नलिखित को सिद्ध कीजिए

$\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$

$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $