$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $
$\tan A$
$\cot A$
$\tan 2A$
$\cot 2A$
$\frac{{\cos A}}{{1 - \sin A}} = $
$\sin {20^o}\,\sin {40^o}\,\sin {60^o}\,\sin {80^o} = $
$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $
यदि $A = 133^\circ ,$ तब $\;2\cos \frac{A}{2} =$
यदि $A + B + C = {180^o},$ तब $(\cot B + \cot C)\,(\cot C + \cot A)$ $(\cot A + \cot B)$ का मान होगा