Prove that: $\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
$L.H.S.$ $=\cos 6 x$
$=\cos 3(2 x)$
$=4 \cos ^{3} 2 x-3 \cos 2 x\left[\cos 3 A=4 \cos ^{3} A-3 \cos A\right]$
$=4\left[\left(2 \cos ^{2} x-1\right)^{3}-3\left(2 \cos ^{2} x-1\right)\right]\left[\cos 2 x=2 \cos ^{2} x-1\right]$
$=4\left[\left(2 \cos ^{2} x\right)^{3}-(1)^{3}-3\left(2 \cos ^{2} x\right)^{2}+3\left(2 \cos ^{2} x\right)\right]-6 \cos ^{2} x+3$
$=4\left[8 \cos ^{6} x-1-12 \cos ^{4} x+6 \cos ^{2} x\right]-6 \cos ^{2} x+3$
$=32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3$
$=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
$=\operatorname{R.H.S}$
If $\sin x + \cos x = \frac{1}{5},$ then $\tan 2x$ is
In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to
$\sin 12^\circ \sin 48^\circ \sin 54^\circ = $
Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$
Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set $S$ is equal to