Prove that: $\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=\cos 6 x$

$=\cos 3(2 x)$

$=4 \cos ^{3} 2 x-3 \cos 2 x\left[\cos 3 A=4 \cos ^{3} A-3 \cos A\right]$

$=4\left[\left(2 \cos ^{2} x-1\right)^{3}-3\left(2 \cos ^{2} x-1\right)\right]\left[\cos 2 x=2 \cos ^{2} x-1\right]$

$=4\left[\left(2 \cos ^{2} x\right)^{3}-(1)^{3}-3\left(2 \cos ^{2} x\right)^{2}+3\left(2 \cos ^{2} x\right)\right]-6 \cos ^{2} x+3$

$=4\left[8 \cos ^{6} x-1-12 \cos ^{4} x+6 \cos ^{2} x\right]-6 \cos ^{2} x+3$

$=32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3$

$=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

$=\operatorname{R.H.S}$

Similar Questions

If $\sin A + \cos A = \sqrt 2 ,$ then ${\cos ^2}A = $

The value of $ \cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right)$ is 

  • [JEE MAIN 2020]

If $\sin 2\theta + \sin 2\phi = 1/2$ and $\cos 2\theta + \cos 2\phi = 3/2$, then ${\cos ^2}(\theta - \phi ) = $

If ${\tan ^2}\theta = 2{\tan ^2}\phi + 1,$ then $\cos 2\theta + {\sin ^2}\phi $ equals

If $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ then the numerical value of $k$ is

  • [IIT 1993]