${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $
$\frac{1}{2}$
$\frac{1}{4}$
$\frac{3}{2}$
$\frac{3}{4}$
यदि $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ तथा $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}, \alpha$, $\beta \in\left(0, \frac{\pi}{2}\right)$, हैं, तो $\tan (\alpha+2 \beta)$ बराबर ........ है |
यदि $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$
$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$
तथा $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ हो, तब
यदि $\sin 2\theta + \sin 2\phi = 1/2$ तथा $\cos 2\theta + \cos 2\phi = 3/2$, तब ${\cos ^2}(\theta - \phi ) = $
सिद्ध कीजिए $\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$
यदि $cos A = {3\over 4} , $ तब $32\sin \left( {\frac{A}{2}} \right)\sin \left( {\frac{{5A}}{2}} \right) = $