3.Trigonometrical Ratios, Functions and Identities
easy

निम्नलिखित को सिद्ध कीजिए

$\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

Option A
Option B
Option C
Option D

Solution

$L.H.S.$ $=\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]$

$=\sin x \cos x[\tan x+\cot x]$

$=\sin x \cos x\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)$

$=(\sin x \cos x)\left[\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right]$

$=1= R. H. S.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.