નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
$L.H.S.=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$
$=\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right)$
$=\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right)$
$=\frac{\left(\cos ^{2} A\right)\left(\sin ^{2} A\right)}{\sin A \cos A}$
$=\sin A \cos A$
$R.H.S=\frac{1}{\tan A+\cot A}$
$=\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}=\frac{1}{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}$
$=\frac{\sin A \cos A}{\sin ^{2} A+\cos ^{2} A}=\sin A \cos A$
Hence,$L . H . S=R . H . S$
$\triangle$ $PQR$માં, $Q$ કાટખૂણો છે (જુઓ આકૃતિ). $PQ = 3$ સેમી અને $PR = 6$ સેમી હોય, તો $\angle QPR$ અને $\angle PRQ$ શોધો.
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$
ત્રિકોણમિતીય ગુણોતરો $\cos A ,$ $\tan A$ અને $\sec A$ ને $\sin A$ ના સ્વરૂપમાં દર્શાવો.
જો $\tan A =\cot B$ હોય, તો સાબિત કરો કે, $A + B =90^{\circ}$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$