નિત્યસમ $\operatorname{cosec}^{2} A=1+\cot ^{2} A$ નો ઉપયોગ કરીને $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$ સાબિત કરો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$

Using the identity $\operatorname{cosec}^{2} A =1+\cot ^{2} A$

$L.H.S.$ $=\frac{\cos A -\sin A +1}{\cos A +\sin A -1}$

$=\frac{\frac{\cos A}{\sin A}-\frac{\sin A}{\sin A}+\frac{1}{\sin A}}{\frac{\cos A}{\sin A}+\frac{\sin A}{\sin A}+\frac{1}{\sin A}}$

$=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}$

$=\frac{\{(\cot A)-(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}{\{(\cot A)+(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}$

$=\frac{(\cot A-1+\operatorname{cosec} A)^{2}}{(\cot A)^{2}-(1-\operatorname{cosec} A)^{2}}$

$=\frac{\cot ^{2} A+1+\operatorname{cosec}^{2} A-2 \cot A-2 \operatorname{cosec} A+2 \cot A \operatorname{cosec} A}{\cot ^{2} A-\left(1+\operatorname{cosec}^{2} A-2 \operatorname{cosec} A\right)}$

$=\frac{2 \operatorname{cosec}^{2} A+2 \cot A \operatorname{cosec} A-2 \cot A-2 \operatorname{cosec} A}{\cot ^{2} A-1-\operatorname{cosec}^{2} A+2 \operatorname{cosec} A}$

$=\frac{2 \operatorname{cosec} A(\operatorname{cosec} A+\cot A)-2(\cot A+\operatorname{cosec} A)}{\cot ^{2} A-\operatorname{cosec}^{2} A-1+2 \operatorname{cosec} A}$

$=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{-1-1+2 \operatorname{cosec} A}$

$=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{(2 \operatorname{cosec} A-2)}$

$=\operatorname{cosec} A+\cot A$

$= R . H.S.$

Similar Questions

 નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

જો $15 \cot A =8$ હોય, તો $\sin A$ અને $\sec A$ શોધો.

$9 \sec ^{2} A-9 \tan ^{2} A=........$

ખૂણા $\angle A$ ના બધા જ ત્રિકોણમિતીય ગુણોત્તરોને $\sec$ $A$ નાં પદોમાં દર્શાવો.

નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :

$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$