वर्षा का पानी $30\, m s ^{-1}$ की चाल से ऊधर्वाधर नीचे गिर रहा है। कोई महिला उत्तर से दक्षिण की ओर $10\, m s ^{-1}$ की चाल से साइकिल चला रही है। उसे अपना छाता किस दिशा में रखना चाहिए।
The described situation is shown in the given figure.
Here,
$v_{ c }=$ Velocity of the cyclist
$v_{ r }=$ Velocity of falling rain
In order to protect herself from the rain, the woman must hold her umbrella in the direction of the relative velocity ( $v$ ) of the rain with respect to the woman. $v=v_{r}+\left(-v_{c}\right)$
$=30+(-10)=20 \,m / s$
$\tan \theta=\frac{v_{ c }}{v_{ r }}=\frac{10}{30}$
$\theta=\tan ^{-1}\left(\frac{1}{3}\right)$
$=\tan ^{-1}(0.333) \approx 18^{\circ}$
Hence, the woman must hold the umbrella toward the south, at an angle of nearly $18^{\circ}$ with the vertical.
स्थिर जल में किसी तैराक की चाल $20\; m/s$ है | नदी के जल की चाल $10 \;m/s$ है तथा ठीक पूर्व की ओर बह रहा है | यदि वह दक्षिणी किनारे पर खड़ा है और नदी को लघुतम पथ के अनुदिश पार करना चाहता है तो उत्तर के सापेक्ष उसे जिस कोण पर स्ट्रोक लगाने चाहिए वह है (पश्चिम के साथ)
एक नाव नदी में $3\hat i + 4\hat j$ वेग से गतिशील है तथा जल का वेग जमीन के सापेक्ष $ - 3\hat i - 4\hat j$ है। जल के सापेक्ष नाव का आपेक्षिक वेग होगा
कोई तितली उत्तर-पूर्व दिशा में $4 \sqrt{2} \,m / s$ के वेग से उड़ रही है। हवा धीरे-धीरे $1 \,m / s$ की चाल से उत्तर से दक्षिण दिशा की ओर बह रही है। $3\, s$ में इस तितली का परिणामी विस्थापन $.....\,m$ होगा।
स्थिर जल में नाव की चाल $5$ किमी/घण्टा है। यह न्यूनतम दूरी के पथ के अनुदिश $1$ किमी चौड़ी नदी को $15 $ मिनिट में पार करती है। नदी के जल का वेग .......... $ km/h$ होगा
दो व्यक्ति $25\, km/hr$ के वेग से कार में पूर्व की ओर जा रहे हैं, एक रेलगाड़ी उन्हें $25\sqrt 3 $ $km/hr$ के वेग से उत्तर की ओर जाती हुई प्रतीत होती है। रेलगाड़ी का वास्तविक वेग ......... $km/hr$ होगा