Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because
$f $ is not continuous on $ [ -1, 1]$
$f$ is not differentiable on $ (-1,1)$
$f( - 1) \ne f(1)$
$f( - 1) = f(1) \ne 0$
Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then
If $f(x) = \cos x,0 \le x \le {\pi \over 2}$, then the real number $ ‘c’ $ of the mean value theorem is
The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is
If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$ . .
Verify Rolle's theorem for the function $y=x^{2}+2, a=-2$ and $b=2$