Select the correct statement : (Only force on a particle is due to electric field)
A charged particle always moves along the electric line of force.
A charged particle may move along the line of force
A charge particle never moves along the line of force
A charged particle moves along the line of force only if released from rest.
The electric field in a region is radially outward and at a point is given by $E=250 \,r V / m$ (where $r$ is the distance of the point from origin). Calculate the charge contained in a sphere of radius $20 \,cm$ centred at the origin ......... $C$
Two particles ${A}$ and ${B}$ having charges $20\, \mu {C}$ and $-5\, \mu {C}$ respectively are held fixed with a separation of $5\, {cm}$. At what position a third charged particle should be placed so that it does not experience a net electric force?
Electric field at centre $O$ of semicircle of radius $a$ having linear charge density $\lambda$ given is given by
The distance between a proton and electron both having a charge $1.6 \times {10^{ - 19}}\,coulomb$, of a hydrogen atom is ${10^{ - 10}}\,metre$. The value of intensity of electric field produced on electron due to proton will be
Two point charges $q_{1}$ and $q_{2},$ of magnitude $+10^{-8} \;C$ and $-10^{-8}\; C ,$ respectively, are placed $0.1 \;m$ apart. Calculate the electric fields at points $A, B$ and $C$ shown in Figure