If $A, B$ and $C$ are non-empty sets, then $(A -B)  \cup (B -A)$ equals 

  • A

    $(A  \cup B) -B$

  • B

    $A -(A  \cap B)$

  • C

    $(A  \cup B) -(A  \cap B)$

  • D

    $(A \cap B)  \cup (A  \cup B)$

Similar Questions

Find the intersection of each pair of sets :

$X=\{1,3,5\} Y=\{1,2,3\}$

If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to

Find the union of each of the following pairs of sets :

$A=\{a, e, i, o, u\} B=\{a, b, c\}$

For any sets $\mathrm{A}$ and $\mathrm{B}$, show that

$P(A \cap B)=P(A) \cap P(B).$

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$A-D$