If $A, B$ and $C$ are non-empty sets, then $(A -B) \cup (B -A)$ equals
$(A \cup B) -B$
$A -(A \cap B)$
$(A \cup B) -(A \cap B)$
$(A \cap B) \cup (A \cup B)$
Find the intersection of each pair of sets :
$X=\{1,3,5\} Y=\{1,2,3\}$
If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$
For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$A-D$