Show that function $f : R \rightarrow\{ x \in R :-1< x <1\}$ defined by $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$ is one-one and onto function.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $f : R \rightarrow\{ x \in R :-1< x <1\}$ is defined as $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$

For one-one

Suppose $f(x)=f(y),$ where $x, y \in R$

$\Rightarrow \frac{x}{1+|x|}=\frac{y}{1+|y|}$

It can be observed that if $x$ is positive and $y$ is negative,

Then, we have $\frac{x}{1+x}=\frac{y}{1+y} \Rightarrow 2 x y=x-y$

since, $x$ is positive and $y$ is negative

$x>y \Rightarrow x-y>0$

But, $2 x y$ is negative.

Then $2 x y \neq x-y$

Thus, the case of $x$ being positive and $y $ being negative can be ruled out.

Under a similar argument, $ x$ being negative and $y$ being positive can also be ruled out.

$\therefore $ $x$ and $y$ have to be either positive or negative.

When $x$ and $y$ are both positive, we have

$f(x)=f(y) \Rightarrow \frac{x}{1+x}$ $=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y$

When $x$ and $y$ are both negative, we have

$f(x)=f(y) \Rightarrow \frac{x}{1-x}=\frac{y}{1-y} $ $\Rightarrow x-x y=y-x y \Rightarrow x=y$

$\therefore f$ is one $-$ one.

For onto

Now, let $y \in R$ such that $-1 < y < 1$

$(x)=f\left(\frac{y}{1+y}\right)$ $=\frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|}$ $=\frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)}$ $=\frac{y}{1+y-y}=y$

If $y$ is positive, then, there exists $x=y 1-y \in R$ such that

$(x)=f\left(\frac{y}{1-y}\right)$ $=\frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|}$ $=\frac{\frac{y}{1-y}}{1+\left(\frac{-y}{1-y}\right)}$ $=\frac{y}{1-y+y}=y$

$\therefore f$ is onto.

Hence, $f$ is one $-$ one and onto.

Similar Questions

Let $X$ be a non-empty set and let $P(X)$ denote the collection of all subsets of $X$. Define $f: X \times P(X) \rightarrow R$ by $f(x, A)=\left\{\begin{array}{ll}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A^*\end{array}\right.$ Then, $f(x, A \cup B)$ equals

  • [KVPY 2011]

If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ then 

Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to

  • [JEE MAIN 2014]

Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ? 

Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$  $\forall $  $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$  $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.