Show that function $f : R \rightarrow\{ x \in R :-1< x <1\}$ defined by $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$ is one-one and onto function.
It is given that $f : R \rightarrow\{ x \in R :-1< x <1\}$ is defined as $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$
For one-one
Suppose $f(x)=f(y),$ where $x, y \in R$
$\Rightarrow \frac{x}{1+|x|}=\frac{y}{1+|y|}$
It can be observed that if $x$ is positive and $y$ is negative,
Then, we have $\frac{x}{1+x}=\frac{y}{1+y} \Rightarrow 2 x y=x-y$
since, $x$ is positive and $y$ is negative
$x>y \Rightarrow x-y>0$
But, $2 x y$ is negative.
Then $2 x y \neq x-y$
Thus, the case of $x$ being positive and $y $ being negative can be ruled out.
Under a similar argument, $ x$ being negative and $y$ being positive can also be ruled out.
$\therefore $ $x$ and $y$ have to be either positive or negative.
When $x$ and $y$ are both positive, we have
$f(x)=f(y) \Rightarrow \frac{x}{1+x}$ $=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y$
When $x$ and $y$ are both negative, we have
$f(x)=f(y) \Rightarrow \frac{x}{1-x}=\frac{y}{1-y} $ $\Rightarrow x-x y=y-x y \Rightarrow x=y$
$\therefore f$ is one $-$ one.
For onto
Now, let $y \in R$ such that $-1 < y < 1$
$(x)=f\left(\frac{y}{1+y}\right)$ $=\frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|}$ $=\frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)}$ $=\frac{y}{1+y-y}=y$
If $y$ is positive, then, there exists $x=y 1-y \in R$ such that
$(x)=f\left(\frac{y}{1-y}\right)$ $=\frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|}$ $=\frac{\frac{y}{1-y}}{1+\left(\frac{-y}{1-y}\right)}$ $=\frac{y}{1-y+y}=y$
$\therefore f$ is onto.
Hence, $f$ is one $-$ one and onto.
If $f(x)$ be a polynomial function satisfying $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$ and $f(4) = 65$ then value of $f(6)$ is
Let $f(x)=\frac{x+1}{x-1}$ for all $x \neq 1$. Let $f^1(x)=f(x), f^2(x)=f(f(x))$ and generally $f^n(x)=f\left(f^{n-1}(x)\right)$ for $n>1$. Let $P=f^1(2) f^2(3) f^3(4) f^4(5)$ Which of the following is a multiple of $P$ ?
Prove that the Greatest Integer Function $f: R \rightarrow R ,$ given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.
For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to
If $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ , then the equation $f(x) = 0$ has