Show that function $f : R \rightarrow\{ x \in R :-1< x <1\}$ defined by $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$ is one-one and onto function.
It is given that $f : R \rightarrow\{ x \in R :-1< x <1\}$ is defined as $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$
For one-one
Suppose $f(x)=f(y),$ where $x, y \in R$
$\Rightarrow \frac{x}{1+|x|}=\frac{y}{1+|y|}$
It can be observed that if $x$ is positive and $y$ is negative,
Then, we have $\frac{x}{1+x}=\frac{y}{1+y} \Rightarrow 2 x y=x-y$
since, $x$ is positive and $y$ is negative
$x>y \Rightarrow x-y>0$
But, $2 x y$ is negative.
Then $2 x y \neq x-y$
Thus, the case of $x$ being positive and $y $ being negative can be ruled out.
Under a similar argument, $ x$ being negative and $y$ being positive can also be ruled out.
$\therefore $ $x$ and $y$ have to be either positive or negative.
When $x$ and $y$ are both positive, we have
$f(x)=f(y) \Rightarrow \frac{x}{1+x}$ $=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y$
When $x$ and $y$ are both negative, we have
$f(x)=f(y) \Rightarrow \frac{x}{1-x}=\frac{y}{1-y} $ $\Rightarrow x-x y=y-x y \Rightarrow x=y$
$\therefore f$ is one $-$ one.
For onto
Now, let $y \in R$ such that $-1 < y < 1$
$(x)=f\left(\frac{y}{1+y}\right)$ $=\frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|}$ $=\frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)}$ $=\frac{y}{1+y-y}=y$
If $y$ is positive, then, there exists $x=y 1-y \in R$ such that
$(x)=f\left(\frac{y}{1-y}\right)$ $=\frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|}$ $=\frac{\frac{y}{1-y}}{1+\left(\frac{-y}{1-y}\right)}$ $=\frac{y}{1-y+y}=y$
$\therefore f$ is onto.
Hence, $f$ is one $-$ one and onto.
Let $X$ be a non-empty set and let $P(X)$ denote the collection of all subsets of $X$. Define $f: X \times P(X) \rightarrow R$ by $f(x, A)=\left\{\begin{array}{ll}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A^*\end{array}\right.$ Then, $f(x, A \cup B)$ equals
If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ then
Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to
Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ?
Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$ $\forall $ $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$ $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.