Range of the function
$f(x) = \sqrt {\left| {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right| - {{\cos }^{ - 1}}\left| {\cos x} \right|} $ is
$\left\{ 0 \right\}$
$\left\{ {\frac{\pi }{2}} \right\}$
$\left\{ {0,\frac{\pi }{2}} \right\}$
$\left[ {0,\frac{\pi }{2}} \right]$
The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-
If in greatest integer function, the domain is a set of real numbers, then range will be set of
If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $
If $f(x)$ is a quadratic expression such that $f(1) + f (2)\, = 0$ , and $-1$ is a root of $f(x)\, = 0$, then the other root of $f(x)\, = 0$ is
The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is