Show that the function $f: R_* \rightarrow R_*$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $R_*$ is the set of all non-zero real numbers. Is the result true, if the domain $R_*$ is replaced by $N$ with co-domain being same as $R _*$ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $f : R ^{*} \rightarrow R$. is defined by $f ( x )=\frac{1}{x}$

For one-one:

Let $x, y \in R *$ such that $f(x)=f(y)$

$\Rightarrow \frac{1}{x}=\frac{1}{y}$

$\Rightarrow x=y$

$\therefore f$ is one $-$ one.

For onto:

It is clear that for $y \in R *$, there exists $x=\frac{1}{y} \in R *[\text { as } y \neq 0]$ such that

$f(x)=\frac{1}{\left(\frac{1}{y}\right)}=y$

$\therefore f$ is onto.

Thus, the given function $f$ is one $-$ one and onto.

Now, consider function g: $N \rightarrow R$. defined by $g ( x )=\frac{1}{x}$

We have, $g\left(x_{1}\right)=g\left(x_{2}\right)$

$\Rightarrow=\frac{1}{x_{1}}=\frac{1}{x_{2}}$

$\Rightarrow x_{1}=x_{2}$

$\therefore g$ is one-one.

Further, it is clear that $g$ is not onto as for $1.2 \in = R_*$. there does not exit any $x$ in $N$ such that $g ( x )$

$=\frac{1}{1.2}$

Hence, function $g$ is one-one but not onto.

Similar Questions

Let $f(x) = \frac{{x\,\, - \,\,1}}{{2\,{x^2}\,\, - \,\,7x\,\, + \,\,5}}$ . Then :

A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series

$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to ....... .

  • [JEE MAIN 2021]

If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$

  • [JEE MAIN 2016]

If function $f : R \to S, f(x) = (\sin x -\sqrt 3 \cos x+1)$ is onto, then $S$ is equal to

If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$ then $f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots \ldots . .+f\left(\frac{2022}{2023}\right)$ is equal to

  • [JEE MAIN 2023]