Show that the function $f: R_* \rightarrow R_*$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $R_*$ is the set of all non-zero real numbers. Is the result true, if the domain $R_*$ is replaced by $N$ with co-domain being same as $R _*$ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $f : R ^{*} \rightarrow R$. is defined by $f ( x )=\frac{1}{x}$

For one-one:

Let $x, y \in R *$ such that $f(x)=f(y)$

$\Rightarrow \frac{1}{x}=\frac{1}{y}$

$\Rightarrow x=y$

$\therefore f$ is one $-$ one.

For onto:

It is clear that for $y \in R *$, there exists $x=\frac{1}{y} \in R *[\text { as } y \neq 0]$ such that

$f(x)=\frac{1}{\left(\frac{1}{y}\right)}=y$

$\therefore f$ is onto.

Thus, the given function $f$ is one $-$ one and onto.

Now, consider function g: $N \rightarrow R$. defined by $g ( x )=\frac{1}{x}$

We have, $g\left(x_{1}\right)=g\left(x_{2}\right)$

$\Rightarrow=\frac{1}{x_{1}}=\frac{1}{x_{2}}$

$\Rightarrow x_{1}=x_{2}$

$\therefore g$ is one-one.

Further, it is clear that $g$ is not onto as for $1.2 \in = R_*$. there does not exit any $x$ in $N$ such that $g ( x )$

$=\frac{1}{1.2}$

Hence, function $g$ is one-one but not onto.

Similar Questions

If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ then period of $sin \ (f(x))$ is

The range of values of the function $f\left( x \right) = \frac{1}{{2 - 3\sin x}}$ is

Let the sets $A$ and $B$ denote the domain and range respectively of the function $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ where $\lceil x \rceil$ denotes the smallest integer greater than or equal to $x$. Then among the statements

$( S 1): A \cap B =(1, \infty)-N$ and

$( S 2): A \cup B=(1, \infty)$

  • [JEE MAIN 2023]

The domain of definition of the function $f (x) = {\log _{\left[ {x + \frac{1}{x}} \right]}}|{x^2} - x - 6|+ ^{16-x}C_{2x-1} + ^{20-3x}P_{2x-5}$  is

Where $[x]$ denotes greatest integer function.

Let $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$. Then the set $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ is

  • [IIT 1995]