- Home
- Standard 12
- Mathematics
Let $R$ and $S$ be two equivalence relations on a set $A$. Then
$R \cup S $ is an equivalence relation on $A$
$R \cap S $ is an equivalence relation on $A$
$R - S$ is an equivalence relation on $A$
None of these
Solution
(b) Given, $R$ and $S$ are relations on set $A$.
$\therefore R \subseteq A \times A$and $S \subseteq A \times A$ ==> $R \cap C \subseteq A \times A$
==> $R \cap S$is also a relation on $A$.
Reflexivity : Let a be an arbitrary element of $A$. Then, $a \in A$==> $(a,a) \in R$and $(a,a) \in S$,
[$\therefore$ $R$ and $S$ are reflexive]
==> $(a,\,a) \in R \cap S$
Thus, $(a,a) \in R \cap S$for all $a \in A$.
So, $R \cap S$is a reflexive relation on $ A$.
Symmetry : Let $a,b \in A$such that $(a,b) \in R \cap S$.
Then, $(a,b) \in R \cap S$ ==> $(a,b) \in R$and $(a,b) \in S$
==> $(b,a) \in R$ and $(b,a) \in S$,
[ $\therefore $ $R$ and $S$ are symmetric]
==> $(b,a) \in R \cap S$
Thus, $(a,b) \in R \cap S$
==> $(b,a) \in R \cap S$ for all $(a,b) \in R \cap S$.
So, $R \cap S$ is symmetric on $A$.
Transitivity : Let $a,b,c \in A$ such that $(a,b) \in R \cap S$ and $(b,c) \in R \cap S$.
Then, $(a,b) \in R \cap S$ and $(b,c) \in R \cap S$
==> $\{ ((a,b) \in R\,\,{\rm{and}}\,(a,b) \in S\,)\} $
and $\{ ((b,c) \in R\,{\rm{and}}\,{\rm{(}}b,c{\rm{)}} \in S\} $
==> $\{ (a,b) \in R,(b,c) \in R\} $ and $\{ (a,b) \in S,(b,c) \in S\} $
==> $(a,c) \in R$ and $(a,c) \in S$
$\left[ \begin{gathered}
\because R\,{\text{and}}\,S\,{\text{are}}\,{\text{transitive}}\,{\text{So}} \hfill \\
{\text{(}}a,b{\text{)}} \in R\,{\text{and (}}b,c{\text{)}} \in R \Rightarrow {\text{(}}a{\text{,}}c{\text{)}} \in R \hfill \\
{\text{(}}a,b{\text{)}} \in S{\text{ and (}}b{\text{,}}c{\text{)}} \in S \Rightarrow {\text{(}}a{\text{,}}c{\text{)}} \in S \hfill \\
\end{gathered} \right.$
==> $(a,c) \in R \cap S$
Thus,$(a,b) \in R \cap S$ and$(b,c) \in R \cap S \Rightarrow (a,c) \in R \cap S$.
So, $R \cap S$ is transitive on $A$.
Hence, $R$ is an equivalence relation on $A$.