Six point charges are kept at the vertices of a regular hexagon of side $L$ and centre $O$, as shown in the figure. Given that $K=\frac{1}{4 \pi \varepsilon_0} \frac{q}{L^2}$, which of the following statement $(s)$ is (are) correct?

$(A)$ the elecric field at $O$ is $6 K$ along $O D$

$(B)$ The potential at $O$ is zero

$(C)$ The potential at all points on the line $PR$ is same

$(D)$ The potential at all points on the line $ST$ is same.

223904-q

  • [IIT 2012]
  • A

    $(A,B,C)$

  • B

    $(A,B,D)$

  • C

    $(A,C,D)$

  • D

    $(B,C,D)$

Similar Questions

A charge $+q$ is distributed over a thin ring of radius $r$ with line charge density $\lambda=q \sin ^{2} \theta /(\pi r)$. Note that the ring is in the $X Y$ - plane and $\theta$ is the angle made by $r$ with the $X$-axis. The work done by the electric force in displacing a point charge $+ Q$ from the centre of the ring to infinity is

  • [KVPY 2019]

Write the relation between the electric field of an electric charge and electrostatic potential at any point.

At the centre of a half ring of radius $R=10 \mathrm{~cm}$ and linear charge density $4 \mathrm{n} \mathrm{C} \mathrm{m}^{-1}$, the potential is $x \pi V$. The value of $x$ is  . . . . . 

  • [JEE MAIN 2024]

Two large vertical and parallel metal plates having a separation of $1 \ cm$ are connected to a $DC$ voltage source of potential difference $X$. A proton is released at rest midway between the two plates. It is found to move at $45^{\circ}$ to the vertical $JUST$ after release. Then $X$ is nearly

  • [IIT 2012]

Four point charges $-Q, -q, 2q$ and $2Q$ are placed, one at each comer of the square. The relation between $Q$ and $q$ for which the potential at the centre of the square is zero is

  • [AIPMT 2012]