Two charges $3 \times 10^{-8}\; C$ and $-2 \times 10^{-8}\; C$ are located $15 \;cm$ apart. At what point on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let us take the origin $O$ at the location of the positive charge. The line joining the two charges is taken to be the $x-$axis; the negative charge is taken to be on the right side of the origin

Let $P$ be the required point on the $x$ -axis where the potential is zero.

If $x$ is the $x$ -coordinate of $P$, obviously $x$ must be positive. (There is no possibility of potentials due to the two charges adding up to zero for $x < 0 .$ If $x$ lies between $O$ and $A$, we have

$\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{3 \times 10^{-8}}{x \times 10^{-2}}-\frac{2 \times 10^{-8}}{(15-x) \times 10^{-2}}\right]=0$

where $x$ is in $cm .$ That is,

$\frac{3}{x}-\frac{2}{15-x}=0$

which gives $x=9 cm$

If $x$ lies on the extended line $OA$, the required condition is $\frac{3}{x}-\frac{2}{x-15}=0$

which gives $x=45\; cm$

Thus, electric potential is zero at $9 cm$ and $45 cm$ away from the positive charge on the side of the negative charge. Note that the formula for potential used in the calculation required choosing potential to be zero at infinity.

898-s2

Similar Questions

Ten charges are placed on the circumference of a circle of radius $R$ with constant angular separation between successive charges. Alternate charges $1,3,5,7,9$ have charge $(+q)$ each, while $2,4,6,8,10$ have charge $(-q)$ each. The potential $V$ and the electric field $E$ at the centre of the circle are respectively

(Take $V =0$ at infinity $)$

  • [JEE MAIN 2020]

An electric charge $10^{-3}$ $\mu C$ is placed at the origin $(0, 0) $ of $X - Y$ co-ordinate system. Two points $A$ and $B$ are situated at $\left( {\sqrt 2 ,\sqrt 2 } \right)$ and $(2,0)$  respectively. The potential difference between the points $A$ and $B$ will be.......$V$

  • [AIEEE 2007]

Assume that an electric field $\vec E = 30{x^2}\hat i$ exists in space. Then the potential difference $V_A-V_O$ where $V_O$ is the potential at the origin and $V_A$ the potential at $x = 2\ m$ is....$V$

  • [JEE MAIN 2014]

Uniform electric field of magnitude $100$ $V/m$ in space is directed along the line $y = 3 + x$. Find the potential difference between point $A$ $ (3, 1)$ $\&$ $B$ $(1, 3)$.......$V$

The electric potential $V(x, y, z)$ for a planar charge distribution is given by: 

$V\left( {x,y,z} \right) = \left\{ {\begin{array}{*{20}{c}}
{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, < \, - d}\\
{ - {V_0}{{\left( {1 + \frac{x}{d}} \right)}^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\, - \,d\, \le x < 0}\\
{ - {V_0}\left( {1 + 2\frac{x}{d}} \right)\,\,\,\,\,\,\,\,\,\,\,for\,0\, \le x < d}\\
{ - 3{V_0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, > \,d}
\end{array}} \right.$

where $-V_0$ is the potential at the origin and $d$ is a distance. Graph of electric field as a function of position is given as