Six vectors, $\overrightarrow a$ through $\overrightarrow f$ have the magnitudes and directions indicated in the figure. Which of the following statements is true ?
$\overrightarrow {b} +\overrightarrow {c} =\overrightarrow {f} $
$\overrightarrow {d} +\overrightarrow {c} = \overrightarrow {f} $
$\overrightarrow {d} +\overrightarrow {e}=\overrightarrow {f} $
$\overrightarrow {b} +\overrightarrow {e}=\overrightarrow {f} $
If the angle between $\hat a$ and $\hat b$ is $60^o$, then which of the following vector $(s)$ have magnitude one
$(A)$ $\frac{\hat a + \hat b}{\sqrt 3}$ $(B)$ $\hat a + \widehat b$ $(C)$ $\hat a$ $(D)$ $\hat b$
How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant
$\overrightarrow A \, = \,2\widehat i\, + \,3\widehat j + 4\widehat k$ , $\overrightarrow B \, = \widehat {\,i} - \widehat j + \widehat k$, then find their substraction by algebric method.
Three vectors $\overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OQ}}$ and $\overrightarrow{\mathrm{OR}}$ each of magnitude $A$ are acting as shown in figure. The resultant of the three vectors is $A \sqrt{x}$. The value of $x$ is. . . . . . . . .